
 
 
 
 
 
 
 
 
 
 
 
 

 

Script Language Reference 
 
 
 
 

Publication: SL/PE0003/UM/4     November 2019 
 
 
 

User Manual for PE0003 Scripting Language 
 
 
  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 2 of 39 SL/PE0003/UM/4   November 2019 
 

1 Introduction 

This document provides a reference to the commands and syntax for the script language 
used in the PE0003 Evaluation Kit Interface Card. 
 

 

1.1 History 
 

Version Changes Date 

1 First Release 
 

02/12/14 

2 Minor corrections and revised layout 03/07/15 

3 Section 6.1.6: information now presented as a table 
Section 8.6 and section 8.6.3: Port command extended with new 
functionality 
Section 8.6.1 and 8.6.2: corrected C-BUS connector references 

15/01/16 

4 Fixed template conversion issues that caused formatting errors 
Corrected minor errors. 
Added fclose command 

19/11/19 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 3 of 39 SL/PE0003/UM/4   November 2019 
 

2 Contents 

1 Introduction ........................................................................................................................ 2 
1.1 History ................................................................................................................................. 2 
2 Contents .............................................................................................................................. 3 
2.1 Glossary .............................................................................................................................. 5 
3 Background & System description ...................................................................................... 6 
4 PE0003 data handling ......................................................................................................... 6 
5 File types ............................................................................................................................. 7 
5.1 Text files .............................................................................................................................. 7 
5.2 Binary files ........................................................................................................................... 7 
6 Script - Command Format ................................................................................................... 7 
7 Syntax .................................................................................................................................. 8 
7.1 Operands ............................................................................................................................ 8 
7.1.1 Constants ....................................................................................................................... 8 
7.1.2 C-BUS handling .............................................................................................................. 8 
7.1.3 C-BUS Addresses ............................................................................................................ 8 
7.1.4 Strings ............................................................................................................................ 8 
7.1.5 Variables ........................................................................................................................ 8 
7.1.6 Conditionals ................................................................................................................... 9 
8 Commands – Summary ..................................................................................................... 10 
8.1 IO involving the host PC .................................................................................................... 11 
8.2 Arithmetic and logic operations........................................................................................ 11 
8.3 Streaming C-BUS ............................................................................................................... 12 
8.4 Program flow .................................................................................................................... 12 
8.5 Timers ............................................................................................................................... 13 
8.6 Miscellaneous ................................................................................................................... 13 
9 Commands – Detailed Description ................................................................................... 14 
9.1 IO involving the host PC .................................................................................................... 14 
9.1.1 Fopenr .......................................................................................................................... 14 
9.1.2 Waitfile ........................................................................................................................ 15 
9.1.3 Fopenw ........................................................................................................................ 16 
9.1.4 Filer .............................................................................................................................. 16 
9.1.5 Filew ............................................................................................................................. 17 
9.1.6 Waituplink.................................................................................................................... 17 
9.1.7 Fclose ........................................................................................................................... 17 
9.1.8 Disp .............................................................................................................................. 18 
9.1.9 Dialog ........................................................................................................................... 18 
9.1.10 Dialogyesno ................................................................................................................. 19 
9.1.11 Dialogentry .................................................................................................................. 19 
9.1.12 CLS................................................................................................................................ 20 
9.2 Arithmetic and logic operations........................................................................................ 20 
9.2.1 Copy ............................................................................................................................. 20 
9.2.2 Add, Sub ....................................................................................................................... 20 
9.2.3 And, Or, Xor ................................................................................................................. 21 
9.2.4 Lsl, Lsr, Asl, Asr ............................................................................................................. 21 
9.3 Streaming C-BUS Read,Write ............................................................................................ 22 
9.4 Program flow .................................................................................................................... 22 
9.4.1 Jmp ............................................................................................................................... 22 
9.4.2 Jmpc ............................................................................................................................. 22 
9.4.3 JSR ................................................................................................................................ 22 
9.4.4 Setvect ......................................................................................................................... 23 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 4 of 39 SL/PE0003/UM/4   November 2019 
 

9.4.5 Intson, intsoff ............................................................................................................... 23 
9.4.6 Rfi ................................................................................................................................. 24 
9.4.7 If ................................................................................................................................... 24 
9.4.8 Elseif ............................................................................................................................. 24 
9.4.9 Else, Endif ..................................................................................................................... 24 
9.4.10 While, Endwhile ........................................................................................................... 25 
9.4.11 Stop .............................................................................................................................. 25 
9.5 Timers ............................................................................................................................... 25 
9.5.1 Settime ......................................................................................................................... 25 
9.5.2 Gettime ........................................................................................................................ 26 
9.5.3 Settimer ....................................................................................................................... 26 
9.5.4 Starttimer..................................................................................................................... 26 
9.5.5 Stoptimer ..................................................................................................................... 26 
9.6 Miscellaneous ................................................................................................................... 27 
9.6.1 Port .............................................................................................................................. 27 
9.6.2 Getport ........................................................................................................................ 28 
9.6.3 Portc ............................................................................................................................. 28 
9.6.4 Portw ........................................................................................................................... 29 
9.6.5 Portr ............................................................................................................................. 29 
9.6.6 Ones ............................................................................................................................. 29 
9.6.7 Device .......................................................................................................................... 29 
9.6.8 Getdevice ..................................................................................................................... 29 
9.6.9 Delay ............................................................................................................................ 30 
9.6.10 Microdelay ................................................................................................................... 30 
9.6.11 Register ........................................................................................................................ 30 
9.6.12 Logon, Logoff ............................................................................................................... 30 
10 Error Messages ................................................................................................................. 31 
10.1 De-bug Messages .............................................................................................................. 31 
10.2 Build Errors ....................................................................................................................... 31 
10.3 Runtime Errors .................................................................................................................. 31 
10.3.1 PC out of range ............................................................................................................ 31 
10.3.2 Invalid opcode.............................................................................................................. 31 
10.3.3 Data index out of range ............................................................................................... 31 
10.3.4 Stack overflow ............................................................................................................. 31 
10.3.5 Stack underflow ........................................................................................................... 32 
10.3.6 Micro text out buffer overflow .................................................................................... 32 
10.3.7 Micro File read buffer underflow................................................................................. 32 
10.3.8 Micro File read buffer overflow ................................................................................... 32 
10.3.9 Attempt to read past end of file .................................................................................. 32 
10.3.10 Invalid Jump Destination ............................................................................................. 32 
10.3.11 Attempt to reference non-existent string .................................................................... 32 
10.3.12 Unable to open file ...................................................................................................... 32 
10.3.13 Error - RX Queue is full. ................................................................................................ 32 
10.3.14 Uplink buffer is smaller than requested space ............................................................ 33 
10.3.15 UART overflow / USB comms error / USB queue full /Serial framing error ................. 33 
10.3.16 Other possible errors ................................................................................................... 33 
11 Script Examples ................................................................................................................. 34 
11.1 Example 1 .......................................................................................................................... 34 
11.2 Example 2 .......................................................................................................................... 34 
11.3 Example 3 .......................................................................................................................... 34 
11.4 Example 4 .......................................................................................................................... 35 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 5 of 39 SL/PE0003/UM/4   November 2019 
 

11.5 Example 5 .......................................................................................................................... 36 
11.6 Example 6 .......................................................................................................................... 38 

 

2.1 Glossary 

CML CML Microsystems plc group of companies 
<CR> A carriage return plus a line-feed character or the ‘Enter’ key on host PC keyboard 
PC Script program counter 
host PC  A personal computer running the GUI application and connected to the PE0003 
White space character 

A space, tab or carriage return character 
ISR Interrupt Service Routine 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 6 of 39 SL/PE0003/UM/4   November 2019 
 

3 Background & System description 

This script language was developed for evaluating CML's new generation ICs including 

FirmASIC
®
-based products, and greatly simplifies the approach to the evaluation and design-in 

process. 
A host PC-based GUI loads, compiles and controls scripts, which are plain text files, and 
executes them on the PE0003. The scripts use a simple syntax to allow the user to read and 
write up to 2 C-BUS ports and the Host port on the PE0003. Script functions allow flexible 
program flow control with data manipulation and message display. The result is much better real-
time performance than when executing the script from the host PC. The script language also 
provides debugging, tracing and I/O control facilities. 

 

4 PE0003 data handling 

The memory on the PE0003 is divided into a number of discrete segments. At run time, the 
entire script is compiled and downloaded to the PE0003 “Command Buffer”. A fixed “Data Buffer” 
is set aside for the contents of variables and arrays used in the script. If the Command Buffer or 
Data Buffer is exceeded then the script will abort and a “Data out of range” message will be 
displayed in the console at run- time. 
 
When a filew command is encountered, data is transferred from the PE0003 to the host PC via a 
fixed buffer (FIFO). This is transparent to the user and the buffer is unlikely to overflow and 
cannot underflow in use. 

 
When a filer command is encountered, data is transferred from the host PC to the PE0003 via 
another fixed buffer (FIFO), the “File Buffer”. This buffer cannot overflow but may underflow in 
use. 

 
It is important to understand how data is handled and transferred between the PE0003 and the 
host PC using these commands. The PE0003 packs all data in 16-bit words, regardless of 
format. This includes data transferred to and from the host PC. 
 
A fopenw command opens or creates a file on the host PC that will be used to receive data from 
the PE0003 script. Each time a filew command is encountered, 16-bits of data are transferred 
from the script to a buffer. The GUI application on the host PC will read this buffer in bursts and 
write the data to the file in the required format. 

 
A fopenr command opens a file on the host PC that will be used to send data to the PE0003 
script. The script is suspended while the file is downloaded to the PE0003 File Buffer. The data 
from the file is read using the format specified in the fopenr command and, if smaller, padded to 
16-bits. If possible, the entire file will be transferred to the File Buffer and the script will continue. 
If the file is too large, the script will suspend until the File Buffer is full and then resume. Each 
time a filer command is encountered, 16-bits of data are transferred from the File Buffer to the 
destination specified. As data is consumed by filer commands, the host PC will send bursts of 
data to the File Buffer until the entire file has been transferred. 

If the data is consumed faster than it is sent then the script will abort and a run-time error 
message, “File buffer underflow” will be displayed in the console. To avoid an underflow, the 
script tool provides the waitfile command. This causes the script to suspend until the File Buffer 
contains at least the number of words specified by the command. 

 
A fopenr command has an optional variable associated with it. This variable acts as a size-of- 
file at the time the file is opened although it will report files greater than $FFFF as $FFFF – the 
size limitation of variables. After the first filer command is encountered, the variable will act as a 
number-of-file-reads remaining because its value is re-calculated following every filer. 
Note there is no direct connection between the size of the file reported by the fopenr variable 
and the real size of the file. This is because fopenr is reporting the number of possible filer 
cycles that can be performed on the file, not its size. 

 
The current sizes of the Command, Data and File Buffers, are given in the About box of the PC 
GUI. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 7 of 39 SL/PE0003/UM/4   November 2019 
 

The data transfer rate between the host PC and the PE0003 depends on the host PC processors 
speed, the OS and other applications that are running. Data is transferred across the USB link in 
bursts so file reads and writes may be managed in bursts with a script delay imposed between, 
although this is not normally necessary. For optimal data handling between the PE0003 and the 
target card, try and keep as much data on the PE0003 as possible: Ensure that files read from 
the host PC will require less than 256k filer cycles. The script will be suspended while these files 
are downloaded. 
 
Try to avoid writing data to files on the host PC where the write cycles will be continuous or with 
little script processing in between. Also try to limit the rate at which messages are sent to the 
GUI. The PE0003 buffers this data until it is consumed by the PC/GUI. If the buffer fills faster 
than the PC/GUI can empty it, an overflow will occur and the script will terminate. 

See Micro File read buffer underflow 

 
Where possible, write to an array on the PE0003 and then transfer the data to the host PC at the 
end of the script or while the script is busy on other tasks or where delays can be inserted 
between the filew commands. If a delay in script execution can be tolerated use the waituplink 
command to stall script execution until the data is transferred. 

 

5 File types 

The script language recognises two filetypes; binary and text. The filetype is inferred from 
the extension ‘.bin’ as binary and anything else as text. 
 

5.1 Text files 

Reading: Files should have one value per line. Lines should be formatted per the string supplied 
in the fopenr command. Blank lines and leading/trailing whitespace are ignored. Any text 
following a semicolon and on the same line, is ignored. Fopenr reports the number of values 
that can be read from the file. 

 
Writing: Lines will be written per the formatted string in filew. Only one value is permitted per 
filew command but /c can be used to put more values on a line. 

 

5.2 Binary files 

Reads and writes are 16-bit. Fopenr reports the number of 16-bit words that can be read from the 
file. The formatted string in fopenr is ignored, but must be present if the ‘filesize’ parameter is 
used. The string in filew is ignored, but must be present. 

 

6 Script - Command Format 

Commands take the general form of: 
 

Label command operand1,operand2,….. ;comment 

 
• Labels must start in the first column and must start with a letter or underscore character. 

Labels are case sensitive. 
• Commands must be separated from a Label by at least one white space character 

except <CR>. 
• Commands are not case sensitive. 
• The command must NOT start in the first column. Only one command is allowed per line. 
• Operands must be separated from the command by at least one white space character 

except <CR>. 
• Operands must be separated by a comma or at least one white space character except 

<CR>. The number of operands required by each command varies and some commands 
have a flexible syntax. 

• Blank lines, lines with just a label, just a comment or just a command (plus operands) are 
all allowed. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 8 of 39 SL/PE0003/UM/4   November 2019 
 

7 Syntax 

7.1 Operands 

7.1.1 Constants 

Constants are declared as follows: 
STATUS const $C6 

BIT1_MASK const 2 

 

The following are all treated as 16-bit: 
#1234 Constant, decimal value 1234. 
678 Constant, decimal value 678. 
#$56AB Constant, hex value 56AB. 
$FE Constant, hex value FE. 

 

7.1.2 C-BUS handling 

C-BUS register accesses comprise an address byte followed by zero or more data bytes. The 
script compiler assumes a default length of two data bytes. To change this, use the register 
command. For streaming C-BUS register access, use the read and write commands. 

 

7.1.3 C-BUS Addresses 

A * character is used to specify the address of a C-BUS register (C-BUS address). 
*45 C-BUS address specified in decimal, value 45 
*$A7 C-BUS address specified in hex, value A7 
*STATUS C-BUS address specified by the constant STATUS 

 

7.1.4 Strings 

Strings have a maximum length of 64 characters. If this length is exceeded the scripting tool 
will abort without warning. 

" hello world." Strings presented in double quotes. 
 

7.1.4.1 Formatted strings 

Some of the commands make use of 'formatted strings'. These work much like the 'printf' 
function in C, with the following differences: 

• A carriage-return and line-feed (\n in the C language) is assumed at the end of a line 
(use \c to continue if you don't want a new line). 

• The disp, dialog, dialogyesno, dialogentry & filew commands support only one 
parameter after the string, so only one format specifier can be used in the string. 

• Formatted strings have a maximum length of 64 characters. If this length is exceeded the 
scripting tool will abort without warning. 

• The standard format specifiers supported are: 

• %d (signed decimal). 

• %u (unsigned decimal). 

• %x and %X (hexadecimal). 

• %f (floating point. When used in filer the string is converted to a 16-bit signed value 
and a warning generated if out of range). 

The usual flags, field width and precision specifiers can be used with these. 
• The following additional format specifiers are also available: 

• %b (binary) no leading zero suppression. 

• %q (Q15 fixed point) 

7.1.5 Variables 

Variables are stored and treated as 16-bit unsigned values throughout the script except when 
operated on by the arithmetic shifts, asl and asr, when the sign bit, b15, will be preserved. 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 9 of 39 SL/PE0003/UM/4   November 2019 
 

Variables are declared as follows: 
bar word n ;Specifies a 16-bit variable‘bar’, 

;initialised to value 'n'. 

foo buffer x ;Specifies an array of x 16-bit words, 

;all initialised to zero. 

foo word 1,2,3,4,5 ;Specifies an array of 5 16-bit words 

;initialised to the values 1 through 5. 

 

Note that 'bar' & 'foo' are labels that identify the variables, so must start in the first column. 

 
Variables are global and can be declared and used at any point in a script. They can also be 
used before they are declared. 
Variables are case sensitive. 
Only one instance of any variable can exist. 
Arrays of variables are indexed from 0. When initialising an array, the values must be on the 
same line and separated by at least one white space character except <CR>. 

 
Variables can be accessed in the following ways: 

bar Return the variable bar. 
foo Return the first word in the array foo. 
foo[0] Return the first word in the array foo. 
foo[3] Return the fourth word in the array foo. 
foo[bar] Return the word at n+1 in the array foo where bar = n. 
foo[bar++] As above, and increment bar. 
foo[bar--] As above, but decrement bar. 

 
If the post-increment and post-decrement operators are used in arrays, no bounds checking is 
done by the script. The user must ensure that the indexing remains in bounds or the script may 
behave unexpectedly. 
 
Scripts may make use of the lack of bounds checking to deliberately cause overruns when using 
arrays. This is helpful for creating long arrays. Consider the following look-up table: 
 
lut word    1  2  3  4  5  6  7  8  9 0    ;create a long array 

lut_a word 11 12 13 14 15 16 17 18 19 20 

lut_b word 21 22 23 24 25 26 27 28 29 30 

lut_c word 31 32 33 34 35 36 37 38 39 40 

lut_d word 41 42 43 44 45 46 47 48 49 50 

lut_e word 51 52 53 54 55 56 57 58 59 60 

lut_f word 61 62 63 64 65 66 67 68 69 70 

 

disp “%u” device_lut[1] ;will display 2 in the console 

disp “%u” device_lut[31] ;will display 32 in the console 

disp “%u” device_lut[54] ;will display 55 in the console 

disp “%u” device_lut[75] ;unpredictable 

 
Array indexing is from 0 and so the first disp command will retrieve the entry at index 1 from the 
array device_lut and display 2 in the console. The second entry will display 32 because, 
although the array bounds have been exceeded the script handler does not detect this 
deliberate error. Arrays are stacked end-to-end in the order they appear in the script. The 
indexing will roll over to the next line because this is the next array in memory. The last display 
command is unpredictable because there are no further arrays to index. 
If another array is placed further down the script, for example after the disp commands: 
 
test_array word 71 72 73 74 75 76 77 78 79 80 

 
The indexing will continue to step through this array and disp “%u” device_lut[75] above will 
display 74 in the console. 

7.1.6 Conditionals 

The following conditional evaluators and operators can be used with the jmpc, jsrc, if, elseif and 
while commands: 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 10 of 39 SL/PE0003/UM/4   November 2019 
 

< Less than 
> Greater than 
= or == Equal to 
!= Not equal to 
<= Less than or equal to 
>= Greater than or equal to 
& Bitwise AND 
| Bitwise OR 
^ Bitwise XOR 
!& Logical inverse of bitwise AND 
!| Logical inverse of bitwise OR 
!^ Logical inverse of bitwise XOR 

 
Bitwise !& (NOT AND) is equivalent to operand1 AND operand2 with the result being negated. 
The following example compares !& to &: 

 
operand1 & operand2  
 

Op1 Op2 Result 

0 0 FALSE 

0 1 FALSE 

1 0 FALSE 

1 1 TRUE 

 
operand1 !& operand2  
 

Op1 Op2 Result 

0 0 TRUE 

0 1 TRUE 

1 0 TRUE 

1 1 FALSE 

 
 

The same is true for the other ‘logical inverse’ conditions, !| and !^. 
 

The script environment assumes only unsigned integer values are used. Be cautious when using 
evaluators as there is no concept of values less than zero. For example, this code fragment will 
work as expected provided count is assigned an even number before the loop. If count is 
assigned an odd number, it will be decremented; 0005.. 0003.. 0001.. FFFF – The loop will never 
exit. 

 
copy <var> to count ;get number of items to be processed 

while count > 0 

 .. ; do something 

 .. 

 sub 2 count 

endwhile 

 
The evaluation of a condition does not change any variables. For example: 

 
copy *Status to sstatus ; read the device status into shadow 

If sstatus & $1000 ; Test status bits without changing the shadow 

 .. ; do something if b12 = 1 

 .. 

elseif sstatus !& $10 

 .. ; do something if b4 = 0 

 .. 

Endif 

8 Commands – Summary 

A detailed description of the commands is available in section 9.The following nomenclature is 
used throughout this section: 

 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 11 of 39 SL/PE0003/UM/4   November 2019 
 

"str" A formatted string or formatted string as described in section 7.1.4.1 
<cond> A condition code as listed in section 7.1.6 
<label> A label referencing a script line, used in jmp, jsr, if & while commands. 

#<const> A constant as described in section 7.1.1 
*<C-BUS> A C-BUS address as described in section 7.1.3 
<var> A variable as described in section 7.1.5 
<any> Any one of #<const>, or *<C-BUS> or <var> (as specified in the description) 
 
Where more than one parameter of the same type is used, an identifier will be added, for 
example: 

<var1> <var2> 

 

8.1 IO involving the host PC 
 

Command Parameters Description 

Fopenr "filename","str" Instructs host PC to open file "filename" for reading using 
formatted string <str> 

"filename","str", 
<var> 

As above but writes the number of filer cycles 

remaining into the variable <var> 

Fopenw "filename" Instructs host PC to open file "filename" for writing. 

Waitfile #<any> Pause the script until the fopenr process has 
downloaded at least enough data to complete <any> filer 
cycles 

Filer 
 

*<C_BUS> Read a value from PC file opened previously by fopenr 
and write it to the C-BUS address *<C-BUS> 
 <var> As before, but write to variable <var> 

Filew 
 

"str",<any> Read the C-BUS address, variable or constant <any> 
and write the data, using formatted string "str", to the host 
PC file previously opened using fopenw  

"str" Write the string “str” to the host PC file previously opened 
using fopenw 

Fclose None Closes a previously open file. Stalls script until the 
OS reports the file has closed. 

Waituplink <any> Pause the script until the buffer for sending to the GUI 
has enough space for <any> messages. 

Disp "str",<any> Read the C-BUS address, variable or constant <any> 
and display the data in the console using formatted string 
"str" 

 
 

"str" Write the string "str" to the console 

Dialog "str",<any> Read the C-BUS address, variable or constant <any> 
and display the data in a dialog box using formatted 
string "str". 

"str" Display a dialog box containing the string "str" 

Dialogyesno "str",<var> As dialog, except this dialog box has three buttons; 
‘Yes’, ‘No’ and ‘Abort’. If the user presses ‘Yes’ <var> 
will be set to 1. If the user presses ‘No’ <var> will be set 
to 0. ‘Abort’ will abort the script. 

Dialogentry "str",<var> As dialog, except this dialog box has an edit box; If the 
user presses ‘OK’ <var> will be set to the value typed in 
the edit box (decimal, or hex preceded by $ or 0x are 
accepted). ‘Abort’ will abort the script. 

Cls None Clear the contents of the console 

 

8.2 Arithmetic and logic operations 

These commands take the form; command <source>, <destination>. The result is always in the 
<destination> operand. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 12 of 39 SL/PE0003/UM/4   November 2019 
 

 
Command Parameters Description 

Copy <any>, <var> <var> = <any> 

<any>, *<C-BUS> *<C-BUS> = <any> 

Add <any>, <var> <var> = <var> + <any> 

Sub <any>, <var> <var> = <var> - <any> 

And <any>, <var> <var> = <var> & <any> 

Or <any>, <var> <var> = <var> | <any> 

Xor <any>, <var> <var> = <var> ^ <any> 

Lsl <any>, <var> <var> = <var> << <any> 

Lsr <any>, <var> <var> = <var> >> <any> 

Asl <any>, <var> <var> = <var> << <any> (Sign bit preserved) 

Asr <any>, <var> <var> = <var> >> <any> (Sign bit preserved) 
 

8.3 Streaming C-BUS 

These two commands only apply to C-BUS when used in streaming mode. Not all C-BUS 
devices support streaming mode. 

 
Command Parameters Description 

Read *<C-BUS>, <var>, 
<any> 

Read C-BUS in streaming mode from C-BUS address 
*<C-BUS> and store the results into an array starting at 
<var>. <any> determines the number of words read. 

Write <var>, *<C-BUS>, 
<any> 

Read from an array starting at <var> and copy to C-BUS 
address *<C-BUS>. <any> determines number of words 
copied. 

 

8.4 Program flow 

Throughout this section, zero equates to FALSE, any non-zero value equates to TRUE. 
 

Command Parameters Description 

Jmp <label> PC=<label> 

Jmpc <any> <cond> <any> <label> PC=<label> if <cond> is TRUE 

Jsr <label> Push PC+1, PC=<label> 

Jsrc <any> <cond> <any> <label> As jsr if <cond> is TRUE 

Return None Pop PC 

Setvect #<const>, <label> On interrupt from device <const> Push PC+1, 
PC=<label> 

Intson  Turn on script interrupt handling 

Intsoff  Turn off script interrupt handling 

Rfi  Pop PC and re-enable interrupts 

If <any> <cond> <any> If <cond> evaluates as FALSE: 
Jump to matching endif or first matching else 
or elseif. 
If <cond> evaluates as TRUE: 
Execute until matching endif, or execute until 
first matching else or elseif then jump to 
matching endif 

<any> As before but <any> is evaluated instead of 
<cond> 

Else None This is just a marker for if 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 13 of 39 SL/PE0003/UM/4   November 2019 
 

 Elseif <any> <cond> <any> If <cond> evaluates as FALSE: 
Jump to matching ‘endif’ or next matching else 
or elseif. 
If <cond> evaluates as TRUE: 
Execute until matching endif, or execute until 
next matching else or elseif then jump to 
matching endif 

<any> As before but <any> is evaluated instead of 
<cond> 

Endif None This is just a marker for if 

While <any> <cond> <any> Jump past matching endwhile if <cond> 
evaluates as FALSE. 

<any> As before but <any> is evaluated instead of 
<cond> 

Endwhile None Jump to matching while 

Stop None Stop executing script 

 

8.5 Timers 
 

Command Parameters Description 

Settime <any> Set current value of count up timer to <any> 

Gettime <var> or *<C-BUS> Read current value of count up timer to <var> or <C- 
BUS> 

Settimer <any> Set start value of countdown timer to <any> 

Starttimer None Start countdown timer running 

Stoptimer None Stop countdown timer running. 
 

8.6 Miscellaneous 
 

Command Parameters Description 

Port <any> Select Port <any> to be 'current' 

Getport <var> Read currently selected port into <var> 

Portc <any> Configure current port with value of <any>. 
A 1 in a bit position sets the corresponding bit in the 
port to be an INPUT. 
A 0 sets it to be an OUTPUT. 

Portw <any> Set hardware output pins of current port to value of 
<any>. 

Portr <var> Set <var> or *<C-BUS> to value read from hardware 
input pins of current port. 

*<C-BUS> As before but send the value read to C-BUS address 
*<C-BUS> 

Ones <any>,<var> Count the number of ones in <any>. Put the result in 
<var>. 

Device <any> Select Device <any> (C-BUS device 1 or 2) 

Getdevice <var> Read currently selected device into <var> 

Delay <any> Script waits for <any> milliseconds 

Microdelay <any> Script waits for <any> x 10 microseconds 

Register #<const1>, 
#<const2>, 
#<const3> 

Defines the format of the C-BUS register on C-BUS1/2  
<const1> is the device (C-BUS device 1 or 2) 
<const2> is the C-BUS register address 
<const3> is the number of bytes required after the 
address byte 

Logon None Start logging C-BUS transactions 

Logoff None Stop logging C-BUS transactions 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 14 of 39 SL/PE0003/UM/4   November 2019 
 

9 Commands – Detailed Description 

Commands are not case sensitive; Fopenr is the same as fopenr. 
Commands must not start in the first column but they can start in any other column. A label, but 
no other text, can precede a command on the same line. 
A command and its parameters must all be on same line. If the line is broken then compile errors 
or unexpected script operation will occur. 
A command’s parameters can separated by a single comma, any number of white space 
characters 
(except carriage return) or any mix of these. Eg: 
 

fopenr “myFile.txt” “04x” FileSize 

fopenr “myFile.txt”,“04x”, FileSize 

fopenr “myFile.txt”, “04x”, FileSize 

 
are all valid and will give the same result. 

 
The following structure is used throughout this section: 
 
Command 

Parameters 
Description 

Example usage 
Restrictions 

 
The following nomenclature is used throughout this section: 

"str" A formatted string as described in section 7.1.4.1 
<cond> A condition code as listed in section 7.1.6 
<label> A label referencing a script line, used in jmp, jsr, if & while commands. 

#<const> A constant as described in section 7.1.1 
*<C-BUS> A C-BUS address as described in section 7.1.3 
<var> A variable as described in section 7.1.5 
<any> Any one of #<const>, or *<C-BUS> or <var> 
Where more than one parameter of the same type is used, an identifier will be added, for 
example: 

<var1> <var2> 
 

9.1 IO involving the host PC 

9.1.1 Fopenr 

Parameters - "filename", "str", <var> or "filename", "str” 
 

Description - The script instructs the host PC to open file "filename" for reading. If the 
file/folder does not exist then an error message will be displayed. The file can be opened 
from a sub-folder using a path specifier in front of the file name. The string "str" describes 
the format of the data read. 
The optional parameter <var> can be used to determine the effective size of the file or as an 
end of file marker. At run-time, the host PC will determine the number of filer cycles that are 
possible with the file. This value will be written to the variable <var> and updated every time 
a filer is executed. If the number of possible filer cycles exceeds $FFFF, the variable limit, 
then the variable will read $FFFF until the number of remaining filer cycles can be stored 
precisely. 
 
At runtime, data that matches the format specified in the fopenr command is copied from the 
host PC file. This data is converted to unsigned 16-bit word and stored in the File Buffer. The 
entire file is processed in this way or until File Buffer is full. If the File Buffer is smaller than 
the file, the file’s content will be piped in bursts until the entire file has been transferred. 
 
When opening binary files, the formatting string must be present but is ignored if the variable 
indicating the size of the file is required. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 15 of 39 SL/PE0003/UM/4   November 2019 
 

Each filer cycle accesses one word sequentially from the File Buffer. If the data in the File 
Buffer is consumed faster than it is transferred from the host PC, an empty buffer may occur. 
This event will terminate script execution with an error message. Such buffer underflows can 
be avoided using the waitfile command. 
 
The same file can be opened for reading and writing but note that the fopenw command 
erases the file contents when executed by the script. Any file previously opened for reading 
will be closed before the specified file is opened. 

 
Example Usage – The following script fragment uses the parameter ‘FileSize’ in fopenr to 
check that the size of the file is not too large for the array, Array. It then uses the same 
parameter to control download of the entire file content to the array. 

 
Array buffer $FF ;initialise an array 

  

fopenr "inputfile.txt","%04X" FileSize ;Tell host PC to open file inputfile.txt 

if FileSize > #$FF 

 Dialogue “Error in Source File – Aborting” 

 stop 

endif 

 
while FileSize != #0 ;While the file contains valid data 

 filer Buffer[BuffSize++]  ;read it into the array and increment the 

;index variable. 

endwhile ;end of while loop 

 
Also see Script Examples, Example 4 

 
Restrictions – The file name, including the filetype and any path specifiers, cannot be longer 
than 64 characters. The filetype should be specified or will default to NULL. The folder in 
which the source script resides is the default. 
Only one file can be open at any time for reading. 

The rate at which the PE0003 File Buffer is filled depends on many factors including the USB 
link and the host PC hardware and OS. Any activity that reduces the rate at which data is 
sent over the USB link may cause the File Buffer to underflow. 
The format specifier determines how binary data is read from the file. The data is stored as 
unsigned 16-bit words in the File Buffer. 

 

9.1.2 Waitfile 

Parameters - <any> 
 

Description – This command allows the script to pause while data is downloaded from the 
host PC, potentially avoiding File Buffer underflows. At run time, script execution pauses at 
this command until the PE0003 file buffer contains at least the number of filer cycles that can 
be executed on the file specified in <any>. If there is insufficient data in the file, the script will 
pause until the last of the data has been downloaded and then the script will continue even 
though the PE0003 File Buffer has not been filled to <any> bytes. Data that does not match 
the required format specified in the fopenr command will be ignored. Waitfile is only 
required when the file being read contains more than 256k filer cycles. For files smaller than 
this, the script will pause at the fopenr command until all the data is downloaded. 

 
Example Usage – This script fragment reads data bursts from a large external file (>256k). A 
waitfile has been inserted ensuring that the PE0003 File Buffer always contains enough 
data for the loop. The script only pauses at the waitfile if there is insufficient data in the 
PE0003 File Buffer. If the PE0003 File Buffer contains at least 27 filer cycles, the script will 
not pause at the waitfile command. 

 
const FrameSize 27 

 
copy #0count ;reset counter 

WaitFile FrameSize 

while count < FrameSize ;Get another Frame ready 

 filer Frame[count++] 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 16 of 39 SL/PE0003/UM/4   November 2019 
 

endwhile 

 
Restrictions – The maximum waitfile delay is 64k filer reads. This limitation is due to the 
maximum value that can be assigned to variables. 

 

9.1.3 Fopenw 

Parameters - "filename", <any> or “filename” 
 

Description - The script instructs the host PC to open file "filename" for writing. If the 
file/folder-list does not exist then it will be created. The file can be opened from a sub-folder 
using path specifiers in front of the file name. The format of the data written is controlled by 
the filew command. The file contents, if any, will be erased when the fopenw command is 
executed by the script. The write is piped to the host PC via a single buffer. The script will 
terminate with an error message if the buffer overflows. 
The same file can be opened for reading and writing but note that the fopenw command 
erases the file contents when executed by the script. 
 
Example Usage - None 

 
Restrictions – The file name cannot be longer than 64 characters and the filetype should 
be specified. Unspecified filetypes will default to NULL. The folder in which the source 
script resides is the default. The rate at which the PE0003 buffer is emptied depends on 
many factors including the USB link rate, the host PC hardware and OS activity. Any 
activity, including PE0003 commands and data, which reduces the rate at which data is 
consumed by the host PC may cause the buffer to overflow. 

 

9.1.4 Filer 

Parameters - *<C-BUS> or <var> 
 

Description – Read the next value from the File Buffer created by fopenr and write it to the 
C-BUS 
register <C-BUS> or variable <var>. 
Data that matches the format specified in the previous fopenr command is copied from 
the host PC file. This data is converted to unsigned 16-bit word and stored in the File 
Buffer. The entire file is processed in this way. Each filer cycle accesses one word 
sequentially from the File Buffer. Values read by filer are converted to the format 
required by the destination. Leading zeroes are added where necessary. 
 

*<C-BUS> - write the value to the C-BUS address as MSB/LSB if the register is 16-bit or 
LSB only if the register is 8-bit. 
<var> - write the value to the variable as a 16-bit unsigned value. 

 
Example Usage – The following table shows the data that will be passed to a variable by 
the filer command. Note how the data is padded with leading zeroes to maintain the 16-bit 
unsigned integer format of variables. If the target is a C-BUS register address, then 
leading zeroes will be added to accommodate the number of data bytes required by the C-
BUS register specified. 
 

 

File Content 
format string in fopenr command 

01x 02x 01d 

ABCD 000A 00AB Ignored 

AB CD 000A 00AB Ignored 

0 0000 0000 0000 

01 0000 0001 0000 

A B 000A 000A Ignored 

h Ignored Ignored Ignored 

1 0001 0001 0001 
 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 17 of 39 SL/PE0003/UM/4   November 2019 
 

See Script Examples, Example 4 

 

Restrictions – See Fopenw command 

9.1.5 Filew 

Parameters - "str", <any> or "str" 
 

Description – Read the C-BUS register address, variable or constant <any> and write it to 
the file created by fopenw. The format of the data written is specified by the parameter "str". 
The <any> parameter can be omitted so that only the string "str” will be written to the file. If 
the file being written is a binary or wav file then the formatting string is ignored. 

 
Example Usage - 

 
filew “Received Data” ;Start the file with a header 

 

Restrictions – The length of the string cannot exceed 64 characters. Only one placeholder 
can appear in the string and if present, must be followed by the second parameter <any>. 

 

9.1.6 Waituplink 

Parameters - <any> 
 

Description – File writes are written into a buffer as they are executed, and sent from the 
micro to the GUI as soon as possible. If the script writes faster than the data can be sent the 
buffer will overflow and the script will abort with an error message. To avoid an overflow, and 
if delay in script execution can be tolerated, the script provides the waituplink command. 
This causes the script to suspend until the buffer has enough space for the number of 
messages specified by <any>. 

 
Example Usage - None 

 
Restrictions – It is possible that waituplink may fail in some instances. This is due to the rate 
at which the PE0003 and the GUI are processing. Waituplink is more likely to fail on a faster 
PC. 
 

9.1.7 Fclose 

Parameters - <any> 
 

Description – Closes the currently open file and stalls script execution until the PC Operating 
System confirms that it has closed the file. When the OS signals that the file has been closed, 
script operation will continue executing at the line following fclose. This allows scripts and 
other PC apps to avoid clashing if they access the same file at mutually exclusive times 
Fclose is not required to close open files. Fopenr and fopenw commands both close 
previously open files automatically but script operation continues without delay. An open file 
is also closed when a script ends or is aborted. Fclose will have no effect if called when no 
file has been opened. 
 
Example Usage – The following script prewrites a value of 0 to GPIO b0 and then sets it to an 
output. A small array is loaded with ten values from 0 to 9. A text file on the same path as the 
script is opened, or created and then opened. The data from the array is copied to the file. 
The file is then closed using the fclose command and GPIO b0 is set 1 to indicate that file is 
now free. 

 
;Define some vars  

 temp  word ;general purpose var 

 data   buffer 10 ;create an array with a length of 10 words 

 index  word 0 ;array indexer 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 18 of 39 SL/PE0003/UM/4   November 2019 
 

;Initialise GPIO 

 port   1  ;Ensure Port1 is default 

 portr  temp ;Read port state 

 and   $FF0F temp ;outputs low 

 portw  temp ;pre-configure the GPIO pin states 

 portc  $FFAF ;b4..7 = GPIO1-4 DDR = 0000b all O/P 

 

;put some data in an array 

 copy   0 index 

 while  (index < 10) 

  copy   index data[index++] 

 endwhile   ;put 10 words in the array 

 

;write the data to a file 

 fopenw "data.txt", "%04X" ;Open file for writing data 

 copy   0 index 

 while  (index < 10) 

  filew  rx_data[index++] ;write the data in the array to a file 

 endwhile 

 

;close the file and then trigger the GPIO1 high when the OS releases the file 

 fclose 

 portr  temp ;Read port state 

 and   $FF1F temp ;configure GPIO1 output high 

 portw  temp ;and write it 

 

 disp "File can now be opened by external app” 

 stop 

 
Restrictions – None 

 

9.1.8 Disp 

Parameters - "str", <any> or "str" 
 

Description – Read the C-BUS register address, variable or constant <any> and write it to 
the console. The format of the data written is specified by the parameter "str". The <any> 
parameter can be omitted so that only the string "str” will be written to the console. Use disp 
to send messages to the console that indicate script progress or to help de-bug scripts. To 
provide user prompts, use Dialog 

 
Example Usage – 

 Disp “Data Exchanged”  ;Debug - Table Header in console 

 Disp “Write Value =%x”, OutValue ;Value written in hex 

 Disp “Read Value =%b”, RetValue ;Result returned in binary 
 
 

Also see Script Examples, Example 4 
 

Restrictions – The length of the string cannot exceed 64 characters. Only one placeholder 
can appear in the string and if present, must be followed by the second parameter <any>. 
 

9.1.9 Dialog 

Parameters - "str", <any> or "str" 
 

Description – Read the C-BUS register address, variable or constant <any> and display it in a 
dialog box. The format of the data written is specified by the parameter "str". The <any> 
parameter can be omitted so that only the string "str” will be written to the console. 
Script execution will be suspended until one of the dialog buttons is clicked. The dialog box is 
modal so must be addressed. Clicking ‘OK’ will resume the script. Clicking ‘Abort’ will 
terminate the script. 
Dialog is best used to provide user prompts or warnings. It can be used with the Trace 
facility to debug script because it provides an exact point at which to stop and abort script 
execution. The trace facility can then be accessed from the GUI window. Use disp to send 
messages to the console that indicate script progress or to help de-bug scripts. 

 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 19 of 39 SL/PE0003/UM/4   November 2019 
 

Example Usage - Same as disp but the string is displayed in a modal dialog box. Also see 

Script Examples, Example 4 
 

Restrictions – The length of the string cannot exceed 64 characters. Only one placeholder 
can appear in the string and if present, must be followed by the second parameter <any>. 
The dialog box is modal so will prevent the GUI application being focused until the dialog box 
closes. 
 

9.1.10 Dialogyesno 

Parameters – “str”,<var> 

 
Description – Produces a dialog box with a message “str” and three buttons: ‘Yes’, ‘No’ and 
‘Abort’. Script execution will be suspended until one of the dialogue buttons is clicked. The 
dialog box is modal so must be addressed: 
If the user clicks ‘Yes’, a 1 will be returned to the variable and the script resumes execution. 
If the user clicks ‘No’, a 0 will be returned to the variable and the script resumes execution. 
If ‘Abort’ is selected the script will be aborted. 

 
Example Usage – 

response word ;declare variable response  

start ;label indicating start of script 

.. ;do something 

.. 

dialog “Repeat Transmission” response ;display the dialogue 

If response == 1 ;if yes.. 

 jmp start ;loop back to the start 

elseif response == 0 

 jmp shutdown ; if no..close down gracefully 

endif 

;Abort will stop the script but will not stop the hardware!! 

 
shutdown ;shutdown routine 

.. ;script to shutdown the hardware and perhaps 

Stop ;read some debug values 

 
 

Restrictions – The length of the string cannot exceed 64 characters. The dialog box is modal 
so will prevent the GUI application being focused until the dialog box is closed. 
 

9.1.11 Dialogentry 

Parameters – “str”,<var> 

 
Description – This command gives the user the ability to modify a variable independent of 
the script. Typical use is to set a variable at run time but is also useful for testing and 
debugging scripts. When the script reaches the line at which dialogentry is located, the 
dialog will be displayed with the message “str” and an edit box. The script will be suspended 
at this point and the user can enter a value in the box. Values can be hexadecimal, prefixed 
with $ or 0x, or integer. Integers are treated as signed and so negative numbers will be 
limited to 15-bit and the sign bit set to 1. When the user clicks ‘OK’ the value entered will 
overwrite the current value of the variable <var>. If the user clicks ‘Abort’ the script will be 
aborted. 

 
Example Usage – 

 
;This loop fragment did not exit so dialogentry has been inserted to force the 

;loop to exit on the required loop_count. De-bug code has been added at the 

;end of the loop to determine the problem. 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 20 of 39 SL/PE0003/UM/4   November 2019 
 

while loop_count < max 

 .. 

 .. 

 add 1 loop_count  

 dialogentry “Modify loop_count” loop_count 

endwhile 

..   ;run some debug code 

.. 

stop 

 
Restrictions – The length of the string cannot exceed 64 characters. The dialog box is modal 
so will prevent the GUI application being focused until the dialog box is closed. Integer 
values entered via the edit box will be treated by the environment as unsigned. It is the 
user’s responsibility to handle signing appropriately. 
 

9.1.12 CLS 

Parameters – None 
 
Description – Clear screen. Clears the console and returns the cursor to the upper, left-hand 
corner. 
 
Example Usage - None 
 
Restrictions – None 

 

9.2 Arithmetic and logic operations 

These commands take the form: 
command <source>,<destination> 
 

The result is always in the <destination> operand. 
 

9.2.1 Copy 

Parameters - <any>,<var> or <any>,*<C-BUS> 
 

Description – Read the C-BUS register address, variable or constant <any> and copy it to 
the variable <var> or alternatively to the C-BUS register address *<C-BUS> 

 
Example Usage – 

 
copy #1234, bar ;bar is assigned 1234d 

copy *$E0, bar ;Read C-BUS register E0h and put the result in bar 

copy bar, foo[1] ;Copy the value in bar to buffer at index1 

copy bar, *$E0 ;Copy data in bar to C-BUS register E0h 

copy *$E4, *$E5 ;loop back data between C-BUS registers 

 

Restrictions – Variables are not typed so use caution when using signed values or other 
formats. When *<C-BUS> is used as either or both operands, device determines which 
C-BUS connector is active. The last example cannot be used to copy data from one C-BUS 
device to another because only one device is active at any time. 
 
Copy is the only arithmetic and logic operations command that accepts *<C-BUS> as a 
destination in its parameter list. The rest of the commands in this section are identical to add 
below. Also, the destination for add and the following commands can only be a <var>. 

 

9.2.2 Add, Sub 

Parameters - <any>,<var> 
 

Description – Read the C-BUS register address, variable or constant <any> and add to (or 
subtract from) the value stored in variable <var>. The result is stored in <var> 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 21 of 39 SL/PE0003/UM/4   November 2019 
 

Example Usage – 
add #1, bar ;bar is incremented by 1 

add *$E0, bar ;Read C-BUS register E0h and add to 

  ;the value in bar 

add bar, foo[1] ;Add the value in bar to buffer at index 1 

Restrictions – Variables are not typed so use caution when using signed values or other 
formats. Variables can only store 16-bits and arithmetic overflows are ignored. 

 

9.2.3 And, Or, Xor 

Parameters - <any>,<var> 
 

Description – Read the C-BUS register address, variable or constant <any> and logically 
AND (OR or XOR) with the value stored in variable <var>. The result is stored in <var>. The 
and, or and xor functions are particularly useful for masking variables to determine bit 
settings, set specific bit patterns or to test for bit changes. 

 
Example Usage – 

 
;**************************************************** 

;Subroutine, ReadStat, to read Data Ready flag in Status register 

;**************************************************** 

ReadStat 

 

Status word 0 ;Variable status is instantiated 

ReadyFlag word 0 ;Status of Data Ready flag 

 

copy *$E0, Status ;Read C-BUS register E0h and copy to Status 

and #0040, Status ;zero all bits except b6 

jmpc Status = 0, NotSet ;ReadyFlag shadows C-Bus 

copy #1, ReadyFlag ;register E0h 

return 

 

NotSet    ;this is a label 

copy #0, ReadyFlag 

return 
 

Restrictions – Variables are not typed so use caution when using signed values or other 
formats. 

 

9.2.4 Lsl, Lsr, Asl, Asr 

Parameters - <any>,<var> 
 

Description - 
lsl – Logical Shift Left 
lsr – Logical Shift Right 
Asl – Arithmetic Shift Left 
Asr – Arithmetic Shift Right 

 
All four commands shift the bits stored in variable <var> in the direction stated (either left or 
right) by the number of places stored in the variable or constant <any>. Bits shifted right 
beyond b0 are discarded. 
For logical shifts, bits shifted left beyond b15 are discarded. 
For Arithmetic shifts, bits shifted beyond b14 are discarded but b15 (the sign bit) is always 
preserved. 
The result is stored in <var>. 

 
Example Usage - None 

 
Restrictions – Variables are not typed so use shift with caution when using signed values 
and other formats. 

 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 22 of 39 SL/PE0003/UM/4   November 2019 
 

9.3 Streaming C-BUS Read,Write 

Parameters: 
Read -  *<C-BUS>, <var>, <any> 
Write - <var>, *<C-BUS>, <any> 

 
Description – These two commands allow streaming accesses between C-BUS registers and 
variables. Three parameters are required; an address of the C-BUS register <C-BUS>, an 
array, indexed with the start location of the data <var> and a length parameter <any>. The 
number of data ‘items’ transferred is equal to the length parameter. Data ‘items’ are stored or 
read consecutively beginning at the array index. The array index is automatically 
incremented. When an 8-bit C-BUS register is read, the least-significant byte of <var> is 
used to store the data. The most-significant byte is padded with zeroes. When an 8-bit C-
BUS register is written, only the least-significant byte of <var> is read. 

 
Example Usage - See Script Examples, Example 3 

 

Restrictions – Reads or writes to an array are not checked to be within range. If the specified 
index is outside the array boundary, then it may produce unexpected results. A fixed-size 
memory pool is assigned for variables, including arrays. When the script is running, a check 
is made to ensure that the available pool is not exceeded. If it is, the script will terminate with 
an error message. 

 

9.4 Program flow 

Throughout this section, zero equates to FALSE, any non-zero value equates to TRUE. 
 

9.4.1 Jmp 

Parameters - <label> 
 

Description – Jump always. Start executing script from label <label>. (The current PC value 
is replaced by the script address marked by label <label>). 

 
Example Usage - None 

 
Restrictions – None 

 

9.4.2 Jmpc 

Parameters - <any> <cond> <any>, <label> 
 

Description – Jump on Condition. Evaluate the condition <cond> and if the result is TRUE, 
continue script execution from label <label>. The parameters <any> are not affected by the 
evaluation. If the result is FALSE, continue script execution from the next script line. (The 
current PC value is replaced by the script address marked by label <label> only if the 
condition <cond> evaluates to a non-zero value.). 

 
Example Usage – See Script Examples, Example 4 

 
Restrictions – The script environment assumes only unsigned integer values are used. Be 
cautious when using evaluators as there is no concept of values less than zero. 
 

9.4.3 JSR 

Parameters - <label> 
 
Description – Jump to Subroutine. Continue script execution from label <label>. (The current 
PC value is pushed onto the stack and the PC loaded by the script address marked by label 
<label>). 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 23 of 39 SL/PE0003/UM/4   November 2019 
 

Example Usage – See Script Examples, Example 4 

 
Restrictions – There can be as many return commands as the programmer wishes but if the 
script encounters a return before a jsr or jsrc have been taken, the stack will underflow. 
This will terminate the script execution and an error message will be displayed. 
 

9.4.4 Setvect 

Parameters - #<const>, <label> 
 

Description – Set the vector for a device interrupt or for the countdown timer timeout - when it 
reaches 0. When an interrupt occurs on the device connected to the device interface 
specified by the value <const>, script execution will continue from the label <label>. The 
<const> value 3 is reserved for the countdown timer. When the countdown timer reaches 
zero, script execution will continue from the label <label>. The script interrupt handler must 
have been previously turned on by intson. The script interrupt handler can be disabled by 
the command intsoff. There is no limit to the number or the placing of intson and intsoff in 
the script. 

 
Example Usage - See Script Examples, Example 5 

 
Restrictions – <const> can only be 1, 2 or 3. Any other value may cause unpredictable 
effects. 
There can only be one instance of setvect for each device number. If additional instances 
occur only the last one declared in the script will be used. Ie. 

 
Setvect 1 ISR1 ;Set up an interrupt vector on device1 

.. 

.. ;some other script lines 

Setvect 1 ISR2 ;Set up a second interrupt vector on device1 

Setvect 3 ISR3 ;Set up a countdown timer interrupt vector 

 

ISR1 ;This ISR will never be taken 

.. ;because the second declaration of 

.. ;setvect 1 supersedes it. 

rfi 

 
ISR2 ;This ISR will be taken when 

.. ;device 1 interrupts 

.. 

rfi 

 
ISR3 ;This ISR will be taken when the countdown timer 

.. ;reaches 0 

.. 

rfi 

 
Script interrupt handling is automatically disabled when a jump to the interrupt vector occurs 
so it is not possible for a second interrupt to interrupt the current ISR. This is true for both 
interrupts so IRQN1 cannot pre-empt IRQN2, for example. 
Intson should not be used if an interrupt vector has not been defined by Setvect. 
Try to limit the number of script lines in the ISR. This makes the ISR exit more quickly and 
can avoid getting stuck in the ISR. 

 

 

9.4.5 Intson, intsoff 

Parameters - None 
 

Description – Turn on and off script interrupt handling. See setvect above. 
 

Example Usage - See Script Examples, Example 5 
 

Restrictions – Intson and intsoff should not be used if an interrupt vector has not been 
defined at some point in the script. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 24 of 39 SL/PE0003/UM/4   November 2019 
 

9.4.6 Rfi 

Parameters – None 
 
Description – Return from Interrupt. Start executing script from the line after the line that the 
jump to the ISR was taken from and re-enable interrupts. (The current PC value is replaced 
by the value popped off the stack). See setvect above. 
 

Example Usage - See Script Examples, Example 5 

 
Restrictions – There can be as many instances of rfi as required but if the script encounters 
an rfi while it is not executing an ISR, the stack will underflow. This will terminate the script 
execution and an error message will be displayed. 
 

9.4.7 If 

Parameters - <any> <cond> <any> or <any> 
 

Description – Evaluate the condition <cond> and if the result is TRUE, continue script 
execution until the next else or elseif, then jump to the matching endif. If the result of the 
evaluation is FALSE, jump directly to the next matching else or elseif. If there is no matching 
else or elseif, then jump directly to the next matching endif. The parameters <any> are not 
affected by the evaluation. 
If the conditional statement is not present, then read the C-BUS register address, variable or 
constant <any>. The value determines whether or not the jump is taken exactly as if the 
condition had been evaluated. If can be nested, together with elseif where required, to any 
depth. 
Brackets can be used around the conditional evaluation for clarity. 

 
Example Usage – 
If foo != 0 ;is the same as 

If (foo != 0) 

 
Restrictions – The script environment assumes only unsigned integer values are used. Be 
cautious when using evaluators as there is no concept of values less than zero. 

 

9.4.8 Elseif 

Parameters - <any> <cond> <any> or <any> 
 

Description – Evaluate the condition <cond> and if the result is TRUE, continue script 
execution until the next matching else or elseif, then jump immediately to the matching 
endif. If the result of the evaluation is FALSE, jump directly to the next matching else or 
elseif. If there is no matching else or elseif, then jump directly to the next matching endif. 
The parameters <any> are not affected by the evaluation. Elseif can be nested, together 
with if where required, to any depth. 

 
Example Usage – None 

 
Restrictions – The script environment assumes only unsigned integer values are used. Be 
cautious when using evaluators as there is no concept of values less than zero. 

 

9.4.9 Else, Endif 

Parameters - None 
 

Description – Markers to enclose the script bound to if and elseif 
 

Example Usage - None 
 

Restrictions – None 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 25 of 39 SL/PE0003/UM/4   November 2019 
 

9.4.10 While, Endwhile 

Parameters - <any> <cond> <any> or <any> 
 

Description – Do While Condition is True. Evaluate the condition <cond> and if the result is 
TRUE, execute the script between the while and the matching endwhile. The condition is 
evaluated after each pass and the enclosed script executed until the condition evaluates to 
FALSE. Script execution will then continue at the line after the matching endwhile. The 
parameters <any> are not affected by the evaluation. 
If the conditional statement is not present, then read the C-BUS register address, variable or 
constant <any>. The value determines whether or not the enclosed script (between while 
and endwhile) is executed exactly as if the condition had been evaluated. While can be 
nested to any depth. 
Brackets can be used around the conditional evaluation for clarity. 

 
Example Usage – 
 
While foo != 0 ;is the same as while(foo != 0) 

 ..do something 

endwhile 

 

while(1) ;do forever 

endwhile 

 
Restrictions – The script environment assumes only unsigned integer values are used. Be 
cautious when using evaluators as there is no concept of values less than zero. 

 

9.4.11 Stop 

Parameters - None 
 

Description – Terminates script execution. A stop is required at some point in all scripts that 
are not intended to loop forever. 

 
Example Usage – See Script Examples 

 
Restrictions – None 

 

9.5 Timers 

There are two timers associated with the scripting language: Time (which is a system timer) 
and Timer (which is a countdown timer). Time is an incrementing timer, running constantly 
from zero when the script starts up. Timer is a decrementing timer (used, for example, for 
timeouts) which only runs when enabled. Both Time and Timer count in milliseconds and are 
reasonably accurate. However, precise measurements cannot be guaranteed. 
Commands Settime and gettime work with ‘Time’. 
Commands settimer, starttimer and stoptimer work with ‘Timer’ 

 

9.5.1 Settime 

Parameters - <any> 
 

Description – This command sets the Time to <any>. Setting Time to a particular value 
occurs as the script line is executed. Time will continue incrementing from the value <any> 
and will continue to $FFFF, roll over to 0 and continue incrementing. This command is 
particularly useful for timing events or scheduling a series of events. 

 
Example Usage – 

 
 settime 0                            ;initialise Time to 0 

 ..                                   ;do something.. 

 .. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 26 of 39 SL/PE0003/UM/4   November 2019 
 

 gettime time ;read the current value of Time 

 disp “Time lapse is %u ms” time ;display how long ‘something’ 

  ;took to complete 

 
Restrictions – There is no signal to indicate when Time rolls over so the script must keep track 
of this. 

 

9.5.2 Gettime 

Parameters - #<var> 
 

Description – Reads the current value of Time and returns it to the variable <var>. 
 

Example Usage – See Settime 

 

9.5.3 Settimer 

Parameters - <any> 
 

Description – Sets the Timer to an initial value <any>. Timer will not begin decrementing until 
started with starttimer. When Timer decrements to zero (if an interrupt vector has been 
defined), execution will continue from the interrupt vector defined by setvect3. 

 
Example Usage – 
This script fragment sets up Timer as timeout while waiting for PFflag to set in the IRQ 
Status register. Without the timeout, the script will wait forever if PFflag does not get set. 

 
Setvect 3 Timer_Int ;IRQ vector initialised in script 

intson 

 

settimer 5 ;set Timer to 5ms 

Starttimer ;and start it 

 ;Timer is running.. 
wait_on_PFflag ;Poll the Status register 

jmpc *IRQ_STATUS !& $4000 wait_on_PFflag ;until the PF flag is set or 

 ;Timer times out (=0)  

Stoptimer 

 

Timer_Int ;Timer has timed out  
 disp “Timeout waiting for PF flag” ;so display a message 

 jmp shutdown ;and shutdown cleanly 

 rfi 

 
Restrictions – The maximum value for Timer is $FFFF or just over 6.5 seconds. 

 

9.5.4 Starttimer 

Parameters – None 
 

Description – Enables the countdown timer. Timer then decrements every millisecond until it 
reaches 0 and then stops. 

 
Example Usage – See Settimer 

 
Restrictions – None 
 

9.5.5 Stoptimer 

Parameters – None 
 

Description – Freezes Timer at the current value. Starttimer will then restart the countdown 
from its current value. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 27 of 39 SL/PE0003/UM/4   November 2019 
 

Example Usage – See Settimer 
 

Restrictions – None 
 

9.6 Miscellaneous 

9.6.1 Port 

Parameters - <any> 
 

Description – Selects the currently active port <any>. Only values of 1 to 19 are valid. 

Port 1 and Port 2 are in the I/O space of the PE0003,  
When the GUI is first started all the configurable I/O lines are set as inputs. If a script 
command changes the state or direction of an I/O pin, the setting will be maintained even 
when the script completes or is aborted. This is helpful where the test/evaluation 
environment needs to be maintained while scripts are cascaded. The default direction and 
state will only be restored when the GUI is closed and restarted. Inputs directly signal the 
state of the connector pins to which they are connected – there is no inversion. 

 
Port 3 to port 19 is extension to the port command that allows storage of data that are 
persistent between script executions. The values are stored in a RAM area of the PE0003, 
making them available between scripts through the commands portr and portw. This memory 
area is not erased before the script execution but a reset of the PE0003 will cause the loss 
of such data. 

 
Example Usage – see example in Port 3, 4, 5, ….. 19 

 
Restrictions – None 
 

9.6.1.1 Port 1 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IO15 IO14 IO13 IO12 IO11 IO10 IO9 IO8 GPIO3 GPIO2 GPIO1 GPIO0 DO4 DO3 DO2 DO1 

 

b15-8 I/O lines connected to Device 2. Can be configured as input or output (default is 
input). 

Target kits may use these pins and require their states to be defined. Check the 
relevant kit’s user manual. 

These pins can only be used on PE0003 RevB boards. For earlier PE0003 boards, 
read as 0. 

b7-4 General purpose I/O lines connected to J6. These can be configured as input or 
output 

(default is input). The external connections are open circuit and will drift if configured 
as inputs without external hardware pre-setting the state. 

b3-0     Outputs connected to LED bank. Always configured as output. These pins are 
connected via open-drain, current sinks. Writing a 1 to the bits will turn the respective 
LED on. Default state is 0 (LED off). 

 

9.6.1.2 Port 2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 IO7 IO6 IO5 RS232\ 
C-BUS 

BOO 
TEN2 

BOO 
TEN1 

IRQN 
2 

IRQN 
1 

IO4 IO3 IO2 IO1 IO0 

 

b15-13 Not available. Writing the port configuration or writing the state of these bits will 
have no effect. These bits will always read as 0. 

b12-b10 

I/O lines connected to Device 1. Can be configured as input or output (default is 
input). 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 28 of 39 SL/PE0003/UM/4   November 2019 
 

Target kits may use these pins and require their states to be defined. Check the 
relevant kit’s user manual. 

b9 RS232/C-BUS mode selection output line connected to Device 1 and Device 2. 

Always configured as output. Default state is 0. 

b8-b7 Boot mode selection output lines connected to Device 1 and Device 2. Always 
configured as outputs. Default state is 0. 

b6-5 Interrupt input lines connected to Device 1 and Device 2. Interrupts normally signal 
active low – therefore 0 = Interrupt. Always configured as inputs. 

b4-0 I/O lines connected to Device 1 and Device 2. Can be configured as input or output 
(default is input). Target kits may use these pins and require their states to be 
defined. Check the relevant kit’s user manual. 

 

NOTE: Device 1 – PE0003 J3, Device 2 – PE0003 J7 

See commands:  Device, setdevice, getdevice 

   Port, getport, portc, portr, portw 
 

9.6.1.3 Port 3, 4, 5, ….. 19 

Any port value from 3 to 19 can be used to store variables. These data can be recovered by 

a subsequent script and used. This allows configuration data to be shared between scripts 

without having to having to configure each script or use an external file for configuration data.  

;Process to store a variable value to be used by other script 

port 3 ;set the port to use 

portw 1234 ;store data 

 

port4 ;set port 4  

portw mydata ;store data from variable 

 

;Process to recover the value of the variable (it can be in a different script file) 

port 3 ;set the port to use 

portr port_val ;read data from the port 

 ;port_val = 1234 

 

Port4 ;set port 4  

portr newdata ;newdata = mydata 

 

9.6.2 Getport 

Parameters - <var> 
 

Description – Getport <var> reads the currently selected port into the variable <var> 
 
Example Usage – None 

 
Restrictions – None 

 

9.6.3 Portc 

Parameters - <any> 
 

Description – Read a configuration word from C-BUS register address, variable or constant 
<any> and copy it to the current Port’s data direction register. A 1 in a bit position sets the 
corresponding bit in the port to be an INPUT. A 0 sets it to be an OUTPUT. See the tables 
above for mapping of bits to pins. 

 
Example Usage – None 

 
Restrictions – Changes to unused bits will be ignored. Changes to bits with a fixed direction 
will be ignored. 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 29 of 39 SL/PE0003/UM/4   November 2019 
 

9.6.4 Portw 

Parameters - <any> 
 

Description – Read a configuration word from C-BUS register address, variable or constant 
<any> and copy it to the current Port’s hardware output pins. 

 
Example Usage – None 

 
Restrictions – Target kits may use these pins to determine start-up or running conditions. 
Certain bit states may have to be pre-defined or appropriately defined in use. Check the 
relevant kit’s user manual for any restrictions. 

 

9.6.5 Portr 

Parameters - <var> or  *<C-BUS> 
 

Description – Read the current port and copy the value to variable <var> or  C-BUS register 
address 
*<C-BUS>. 

 
Example Usage – None 

 
Restrictions – Target kits may use these pins to determine start-up or running conditions. 
Certain bit states may have to be pre-defined or appropriately defined in use. Check the 
relevant kit’s user manual for any restrictions. Unconnected input pins will drift and return 
arbitrary values. 

 

9.6.6 Ones 

Parameters - <any>,<var> 
 

Description – Count the number of ones in the value read from C-BUS register address, 
variable or constant <any> and put the result in variable <var>. 

 
Example Usage – 
 
ones #$0000,count ;count = 0 

ones #$1111,count ;count = 4 

ones #$1248,count ;count = 4 

ones #$aa55,count ;count = 8 

ones #$ffff,count ;count = 16 

 
Restrictions – None 

 

9.6.7 Device 

Parameters - <any> 
 

Description – Selects the currently active Device (C-BUS pins on Connector J3 or J7) <any> 
Only values of 1 or 2 are valid. 

 
Example Usage – see Script Examples, Example 2 

 

Restrictions – None 
 

9.6.8 Getdevice 

Parameters - <var> 
 

Description – Getdevice <var> reads the currently selected device into the variable <var> 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 30 of 39 SL/PE0003/UM/4   November 2019 
 

Example Usage – None 
 

Restrictions – None 
 

9.6.9 Delay 

Parameters - <any> 
 

Description – Pauses script for a number of milliseconds equal to value <any>. 
 

Example Usage – 
 
delay 10 ; pause script processing for 10ms 

 
Restrictions – None 

 

9.6.10 Microdelay 

Parameters - <any> 
 

Description – Pauses script for a number of microseconds equal to the value <any> 
multiplied by 10. 
 
Example Usage – 
 

 microdelay 10 ; suspend script processing for approx 100us 

 

Restrictions – Microdelay is provided to obtain a shorter or less granular delay than delay 
provides. The resolution of microdelay is not guaranteed and can be greatly affected by 
time consuming tasks such as coincident USB activity. Do not use for critical timing delays. 

 

9.6.11 Register 

Parameters - #<const1>, #<const2>, #<const3> 
 

Description – C-BUS registers comprise an address byte followed by zero or more data 
bytes. The register command allows the user to select a device (on PE0003 C-BUS port 
<const1>) and assign device C-BUS registers (<const2>) connected to that port with the 
number of data bytes (<const3>) that follows the address byte. 
If undeclared, C-BUS registers are assumed to require two data bytes after the address byte. 
Thus only C-BUS registers that require 0 data bytes (normally only General Reset) or 1 data 
byte, need be declared. 

 
Example Usage – 

 
  Register 1, $01, 0 ;Set C-BUS register $01 on device connected to 

     ;Port 1 to receive zero data bytes after the 

     ;address byte 

 
Note that the second parameter, $01, in the register command is a constant that represents 
a C-BUS register. Using * to indicate a C-BUS register is not used with register or a build 
error will occur. 

 
Restrictions – Register can only be 1 or 2. Setting a C-BUS register to receive an incorrect 
number of data bytes may cause unexpected operation. 

 

9.6.12 Logon, Logoff 

Parameters - None 
 

Description – Start or stop logging C-BUS transactions. Logon turns on a C-BUS tracing 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 31 of 39 SL/PE0003/UM/4   November 2019 
 

feature that records all C-BUS transactions, with a timestamp, until a logoff is encountered. 
There can be more than one incidence of logon and logoff in the script. When the script 
completes or is aborted, the “See Trace” button on the GUI is enabled. When clicked, this 
button uploads the Log from the PE0003 SD card, if fitted. See the PE0003 User Manual for 
a description of this facility. 

 
Example Usage – None 

 
Restrictions – The trace facility is only available if an SD card is fitted in the PE0003 SC card 
slot. If a SD card is not fitted, the logon and logoff commands will be ignored. Trace logging 
places an extra load on the PE0003 and will cause the script to run more slowly. If buffer 
overflows or underflows occur, try disabling logging which allows script processing to run 
more quickly. 

 

10 Error Messages 

10.1 De-bug Messages 

When a script is aborted the current line number is reported back to the GUI. The console 
will display script aborted at line number n. 

 

10.2 Build Errors 

Build errors are reported in the script console and show the script line number where the problem 
was encountered. An error may occur in a line preceding the line number at which the error is 
reported so check back from the line number given. In the case of missing endif/endwhile 
commands the line number for the unmatched if/while is given. The error messages are listed as 
follows: 

 
Unrecognised command 

If/while without matching endif/endwhile 

Unresolved label(s) 

Command requires n parameters 

Parameter type not allowed 

Duplicate label 

 

10.3 Runtime Errors 

Runtime errors that occur on the PE0003 are always reported in the script console and give the 
value of the PC where the problem was encountered. 

 

10.3.1 PC out of range 

This means that the PC (i.e. the address of the next instruction) is not within the script. Check for 
unexpected jmp, jsr or return commands. 

 

10.3.2 Invalid opcode 

This means that the PE0003 is trying to execute a command it doesn't recognise. 
 

10.3.3 Data index out of range 

A fixed-size memory pool is assigned for variables, including arrays. A check is made to ensure 
that the available pool is not exceeded. This message signals that the variable addressed has 
exceeded the available pool size. Probably caused by excessive use of the foo[bar++/--] syntax. 
This message also occurs if the variable name used in a loop control argument has been 
misspelled or has not been declared. The line number returned in the error message will help 
identify the error. 

 

10.3.4 Stack overflow 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 32 of 39 SL/PE0003/UM/4   November 2019 
 

The stack is used to hold return addresses when jsr or jsrc commands are used. Overflow 
usually indicates repeatedly using jsr without a matching return. An overflow also occurs if jumps 
are used in loops or subroutines. Jumping leaves call data on the stack and eventually the stack 
will overflow. 

 

10.3.5 Stack underflow 

See Stack overflow above. Underflow usually results from using return without having first used 
jsr. 

 

10.3.6 Micro text out buffer overflow 

This is an error in the PE0003 buffer used to transfer data from the PE0003 to the GUI. An 
overflow indicates that data is being sent too fast. Commands that send data via this buffer 
include disp and filew so try inserting delays around these. Note that the actual strings are not 
sent over this link so reducing their length will not help. If script delays can be tolerated, use 
waituplink. 
 

10.3.7 Micro File read buffer underflow 

This is an error in the PE0003 File Buffer used to transfer data from the PE0003 to the GUI and 
will not normally underflow. Data may underflow if the script uses the data faster than the GUI 
can supply it. Use the data more slowly by inserting delays or use the waitfile command. Also 
ensure that the number of host PC applications running are minimised and disconnect other USB 
devices that are not necessary. 

 

10.3.8 Micro File read buffer overflow 

This is an error in the PE0003 buffer used to transfer data from the GUI to the PE0003. The 
amount of data in the buffer is monitored and managed by the PE0003 in such a way that it 
should never overflow. See advice on Micro File read buffer underflow above. 

 

10.3.9 Attempt to read past end of file 

An attempt has been made to read more data than is available from a file on the host PC. This 
may be an indexing error or not checking for data of the correct format. Use the variable in the 
fopenr to check that the file is not empty and then to control the number of read cycles executed. 

 

10.3.10 Invalid Jump Destination 

This means that the value which a jmp, jsr return, if or while command is trying to write to the 
script program counter (i.e. the address of the next instruction) is not within the script. 

 

10.3.11 Attempt to reference non-existent string 

This means that the PE0003 has passed up a string reference that the GUI doesn't recognise. 
The GUI couldn't open the file specified. Check access permissions. 

 

10.3.12 Unable to open file 

The GUI couldn't open the file specified. Check the file exists and that filename and path are 
correct. Also check the permissions allow access for reading or writing as appropriate. 

 

10.3.13 Error - RX Queue is full. 

This is an error in the host PC buffer used to transfer data from the PE0003 to the GUI. An 
overflow indicates that data is being sent too fast. Commands that send data via this buffer 
include disp and filew. Limit the use of disp and try inserting delays around filew to find the 
source of errors. Note that the contents of the string are not sent over this link, so reducing the 
length of the strings will not help. 

 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 33 of 39 SL/PE0003/UM/4   November 2019 
 

10.3.14 Uplink buffer is smaller than requested space 

This means that waituplink has requested more space than the size of the buffer. The 
buffer on the PE0003 can hold 200 messages. 

 

10.3.15 UART overflow / USB comms error / USB queue full /Serial framing error 

These all relate to problems with the USB link between the PE0003 and the GUI. Sending less 
data may help, or using a faster PC. 

 

10.3.16 Other possible errors 

Ensure that all incidences of a variable or constants are spelt identically including case. These 
are NOT tested in loops or conditional expressions during compilation. A misspelt variable or 
constant is effectively a new item but it will not have been declared. The scripting tool will exit 
abnormally at runtime when it tries to process the misspelt item. 
Ensure that evaluations are complete. Use of elseif without a condition will NOT be identified 
during compilation. The scripting tool will exit abnormally at runtime when it tries to process the 
evaluation. 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 34 of 39 SL/PE0003/UM/4   November 2019 
 

11 Script Examples 

11.1 Example 1 

;**************************************************** 

;Send a General Reset to device 1 

;**************************************************** 

GEN_RESET const $01 

 
 register 1, GEN_RESET, 0 ;Set C-BUS port $01 on Device 1 to receive 

    ;zero data bytes following the address byte 

 copy #0 *GEN_RESET ;Send General Reset 

 stop  ;End of script 

 
 

11.2 Example 2 

;**************************************************** 

;Copy a block of data from one device to another 

;Consecutive reads of a data block are not possible on all CML devices 

;**************************************************** 

Bar  buffer 10 

Index  word 0 

 

 device 1    ;Select device 1 

 copy #0, index 

 while index < #10 

  copy *$B5, bar[index++] ;Read from C-BUS, store in bar[n] 

 endwhile    ;and increment index 

 

 device 2    ;Select device 2 

 copy #0, index 

 while index < #10 

  copy bar[index++], *$A7 ;Read from bar[n] write to C-BUS 

 endwhile    ;and increment index 

 

 stop     ;End of script 

 

11.3 Example 3 

;**************************************************** 

;Copy from one device to another using streaming C-BUS 

;**************************************************** 

bar buffer 10 

RxDat const $B5 

TxDat const $A7 

 
 device 1   ;Select device 1 

 read *RxDat, bar[0], #10 ;Read from C-BUS and store in bar[n] 

 

 device 2   ;Select device 2 

 write bar[0],*TxDat, #10 ;Read from bar[n]and write to C-BUS 

 stop    ;End of script 

 

  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 35 of 39 SL/PE0003/UM/4   November 2019 
 

11.4 Example 4 

;**************************************************** 

;Read from a file into a C-BUS address, controlled by flags 

;**************************************************** 
 
count  word 1 

status  word 1 

temp   word 1 

 

 fopenr  "inputfile.txt","%04X" ;Tell host PC to open file & stream data 

 cls      ;Clear console 

 

 copy #0, count ;Set up loop counter 

 while count < #32 ;Start while loop 

  filer temp  ;Read from file 

  write temp, *$A7 ;Write to C-BUS 

  jsr read_and_wait ;Wait for status flag 

  add #1, count ;Increment counter 

  disp "Written %d values.\n", count ;write to console 

 endwhile    ;End of while loop 

 

 dialog "Finished"  ;Send end to message box 

 stop 

 
read_and_wait 

 copy *$C1, status ;Read C-BUS address $C1 into variable 

 and   #$0010,status ;Mask off the wanted bits 

 jmpc  status != #$0010, read_and_wait ;If bit 4 not set, try again. 

 return 

 
Note that if data is consumed by the script (filer in while loop) at a rate faster than the PC can 

supply it, a buffer underflow may occur – see Micro File read buffer underflow for further 

information. 
 

 
  



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 36 of 39 SL/PE0003/UM/4   November 2019 
 

11.5 Example 5 

;**************************************************** 

;This script is to test an encode from the vocoder in the EV8610 kit. 

;Vocoder mode is set from an external file, CodecSetup.txt file, which can be found at the 

;end of this example. 

;Interrupt driven. 

;The sound source is from a PC sound card. 

;**************************************************** 

 

;Variables 

CodeMethod word #$37 ;read external file to set these to 

      ;something other than default 

FrameSize word #$1B ;External file format: 

      ;CodeMethod <CR> FrameSize <CR> 

count   word 0 ;G/P counter 

Port2cpy  word 0 ;Copy of Port2 

Status  word 0 ;Shadow Status 

temp1   word 0 ;G/P register 

Frame   buffer 144 ;buffer to read streaming C-Bus. Could be 

        ;up to 144 bytes 

FrameCount word 0   ;Counter to count the number of frames 

       ;saved to disc 

 
 
;Register defines - device, C-Bus reg, no of bytes 

register #1 #$09 #1 ;Powersave  

register #1 #$07 #1 ;VCFG-Vocoder Configuration 

register #1 #$2E #1 ;SVCACK - Service Acknowledge 

register #1 #$05 #1 ;AIG - Analogue Input Gain 

register #1 #$06 #1 ;AOG - Analogue Output Gain 

register #1 #$30 #1 ;ENCFRAME # - Encoded frame 

 

 fopenr "CodecSetup.txt" "%02x" ;Get vocoder mode from external file 

 filer  CodeMethod 

 filer  FrameSize 

 

 setvect 1 WaitIRQN1 ;Set interrupt 1 vector 

 

;Open the file for the encoded frames - the PC takes a short time to open files and pass 

;back handles 

 Fopenw "Vocoder.smp" 

 

;Configure the CMX618 

 jsr   GenReset ;Subroutine to Reset the CMX618 

 intson    ;turn on the interrupts 

 

 jsr WaitRDY  ;wait until RDY flag is set 

 copy  #$03 *$09 ;Codec/Bias=Enable 

 copy  #$0F *$05 ;MicAmp=0dB, IPGain=22.5dB 

 copy  #$8001 *$1F ;unmask VDA IRQ (RDY already unmasked by default) 

 copy  CodeMethod *$07 ;default - HardCoding, FEC=Enable, 

       ;2400bps, 3x20msFrames 

 jsr WaitRDY   ;Wait for configuration to complete 

 jsr SvcAck   ;Service acknowledged? SvcAck checks can be 

       ;removed once code is stable. 

 delay 100   ;Wait for VBIAS to settle 

 

 copy  #$0002 *$11 ;Turn on encoder 

 jsr  WaitRDY  ;This is another service 

 jsr  SvcAck 

 

 disp "Recording Started" 

 copy #0 FrameCount 

 

Recording 

 jsr  WaitVDA  ;wait for an encoded sample 

 read  *$30 Frame[0] FrameSize ;load Frame buffer with 27 bytes(default) 

 copy  #0 count  ;reset counter 

 while count < FrameSize ;write the buffer to the PC file 

  filew "%02x" Frame[count++] 

 endwhile 

 add  #1 FrameCount ;update the frame counter 

 jmpc  FrameCount < 200 Recording ;Set the maximum recording length here 

       ;(200x60ms by default) 

EndRecording 

 copy  #$0000 *$11 ;Turn off vocoder 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 37 of 39 SL/PE0003/UM/4   November 2019 
 

 jsr  WaitRDY  ;Another service 

 jsr  SvcAck 

 intsoff    ;Turn off the interrupts disp "Recording Stopped" 

 disp  "%d Frames stored" FrameCount 

 

 stop 

 

 

;*****Wait on IRQN1***** 

;ISR. When the IRQN pin goes low on the CMX618 this ISR will run 

 

WaitIRQN1 

 copy  *$40 Status ;Read Status 

 rfi 

 

;******* 

 

;*****wait for flags***** 

;Wait here for an interrupt to set the appropriate flag 

WaitRDY 

 copy  Status temp1 

 and #$8000 temp1 

 jmpc  temp1 != #$8000 WaitRDY 

 and  #$7FFF Status ;Clear the Ready flag in shadow 

 return 

 

WaitVDA     ; copy Status temp1 and #$0001 temp1 

 jmpc  temp1 != $0001 WaitVDA 

 and  #$FFFE Status ;Clear the VDA flag in shadow 

 return 

 

;******* 

 

;*****General Reset***** 

GenReset 

RESET  const $01 ;C-Bus register definition 

 register #1 RESET #0 ;C-Bus register requires 0 bytes 

 

 copy  #0 *RESET 

 return 

 

;******* 

 

;*****Read Ack from SVCACK***** 

;Poll here until the SVC flag is set. 

SvcAck 

 copy  *$2E Status ;Copy SVCACK reg to status 

 and  #$0001 Status ;mask for ACK flag 

 jmpc  Status != #$0001 SvcAck ;loop until SVC flag set 

 return 

 

;******* 

 

 

;**************************************************** 

CodecSetup.txt file 

;**************************************************** 

;This external text file is used to set the required codec format. 

;Format: 

; CodeMethod (hex) 

; FrameSize (hex) 

;Remove the ';' at the beginning of the line for the two values required. 

;Only the first two incidences matching the fopenr format will be used. 

;The other codec formats can be easily added except those using soft bit coding. 

 

;2050bps, 1x20ms 

;01 

;06 

 

;2400bps, 3x20ms 

37 

1B 

;2750bps, 3x20ms, FEC, Hard bits 

;3B 

;1B 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 38 of 39 SL/PE0003/UM/4   November 2019 
 

 

;2050, 4x20ms, FEC, Hard bits 

;30 

;24 

 

;2750, 4x20ms, FEC, Hard bits 

;38 

;24 

 

11.6 Example 6 

;**************************************************** 

;This script fragment uses the ones command in a bit error rate (BER) test. 

;A copy of the being data sent from the far-end modem is in the file 

;data.txt. This file is read and compared to the data received by the modem. 

;Any bit differences are flagged as ones (bit=1) which can be counted. 

;**************************************************** 

 

count    word 0 

rx_data   word 0 

file_data  word 0 

error_bits  word 0 

tot_error_bits word 0 

 
 
 fopenr "data.txt", "%04X" ;Open file with expected data. 

 

 while (count < 100) ;Do 100 words. 

  while (*$AB != 1) ;Wait for modem to indicate word received. 

  endwhile 

  copy *$12, rx_data ;Read word from modem. 

  filer file_data ;Read word from file. 

  xor  file_data, rx_data ;Compare. 

  ones rx_data, error_bits ;Count bits which are different. 

  add  error_bits, tot_error_bits ;Keep running total. 

  add  #1, count ;Increment count 

 endwhile 

 

 disp "Received 100 words, %d bits in error", tot_error_bits 

 stop 

 



 
 
 

User Manual for PE0003 Scripting Language   

 

© 2019 CML Microsystems Plc 39 of 39 SL/PE0003/UM/4   November 2019 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CML does not assume any responsibility for the use of any algorithms, methods or circuitry described. No IPR or circuit patent 
licenses are implied. CML reserves the right at any time without notice to change the said algorithms, methods and circuitry and this 
product specification. CML has a policy of testing every product shipped using calibrated test equipment to ensure compliance with 
this product specification. Specific testing of all circuit parameters is not necessarily performed. 

www.cmlmicro.com

         United Kingdom         p:  +44 (0) 1621 875500        e:  sales@cmlmicro.com
         techsupport@cmlmicro.com

                    Singapore p:  +65 62888129                   e:  sg.sales@cmlmicro.com
         sg.techsupport@cmlmicro.com

              United States         p:  +1 336 744 5050       e:  us.sales@cmlmicro.com
                                                                 us.techsupport@cmlmicro.com

 


	Document Front Page

	1 Introduction
	1.1 History
	1.2

	2 Contents
	2.1 Glossary

	3 Background & System description
	4 PE0003 data handling
	5 File types
	5.1 Text files
	5.2 Binary files

	6 Script - Command Format
	7 Syntax
	7.1 Operands
	7.1.1 Constants
	7.1.2 C-BUS handling
	7.1.3 C-BUS Addresses
	7.1.4 Strings
	7.1.4.1 Formatted strings

	7.1.5 Variables
	7.1.6 Conditionals


	8 Commands – Summary
	8.1 IO involving the host PC
	8.2 Arithmetic and logic operations
	8.3 Streaming C-BUS
	8.4 Program flow
	8.5 Timers
	8.6 Miscellaneous

	9 Commands – Detailed Description
	9.1 IO involving the host PC
	9.1.1 Fopenr
	9.1.2 Waitfile
	9.1.3 Fopenw
	9.1.4 Filer
	9.1.5 Filew
	9.1.6 Waituplink
	9.1.7 Fclose
	9.1.8 Disp
	9.1.9 Dialog
	9.1.10 Dialogyesno
	9.1.11 Dialogentry
	9.1.12 CLS

	9.2 Arithmetic and logic operations
	9.2.1 Copy
	9.2.2 Add, Sub
	9.2.3 And, Or, Xor
	9.2.4 Lsl, Lsr, Asl, Asr

	9.3 Streaming C-BUS Read,Write
	9.4 Program flow
	9.4.1 Jmp
	9.4.2 Jmpc
	9.4.3 JSR
	9.4.4 Setvect
	9.4.5 Intson, intsoff
	9.4.6 Rfi
	9.4.7 If
	9.4.8 Elseif
	9.4.9 Else, Endif
	9.4.10 While, Endwhile
	9.4.11 Stop

	9.5 Timers
	9.5.1 Settime
	9.5.2 Gettime
	9.5.3 Settimer
	9.5.4 Starttimer
	9.5.5 Stoptimer

	9.6 Miscellaneous
	9.6.1 Port
	9.6.1.1 Port 1
	9.6.1.2 Port 2
	9.6.1.3 Port 3, 4, 5, ….. 19

	9.6.2 Getport
	9.6.3 Portc
	9.6.4 Portw
	9.6.5 Portr
	9.6.6 Ones
	9.6.7 Device
	9.6.8 Getdevice
	9.6.9 Delay
	9.6.10 Microdelay
	9.6.11 Register
	9.6.12 Logon, Logoff


	10 Error Messages
	10.1 De-bug Messages
	10.2 Build Errors
	10.3 Runtime Errors
	10.3.1 PC out of range
	10.3.2 Invalid opcode
	10.3.3 Data index out of range
	10.3.4 Stack overflow
	10.3.5 Stack underflow
	10.3.6 Micro text out buffer overflow
	10.3.7 Micro File read buffer underflow
	10.3.8 Micro File read buffer overflow
	10.3.9 Attempt to read past end of file
	10.3.10 Invalid Jump Destination
	10.3.11 Attempt to reference non-existent string
	10.3.12 Unable to open file
	10.3.13 Error - RX Queue is full.
	10.3.14 Uplink buffer is smaller than requested space
	10.3.15 UART overflow / USB comms error / USB queue full /Serial framing error
	10.3.16 Other possible errors


	11 Script Examples
	11.1 Example 1
	11.2 Example 2
	11.3 Example 3
	11.4 Example 4
	11.5 Example 5
	11.6 Example 6

	End of Document


